
PBound: A Tool for Performance Bound Modeling

1 Introduction

PBound is a tool for estimating upper performance bounds of C/C++ applications through static compiler
analysis. The tool generates parameterized expressions for different types of memory accesses and integer and
floating-point computations. Combined with architectural information, upper bounds on the performance of
an application on a particular system can be estimated. Application designers can test observed performance
against these bounds to calculate the efficiency of their implementation where efficiency is defined to be the
ratio of achieved performance to the performance bound. This enables more effective performance tuning
than using theoretical peak performance. Alternately, if the achieved efficiency is high but the calculated
bound is low, a different algorithm or architecture can be explored to improve the performance bounds. For
example, for an iterative linear solver limited by memory bandwidth, performance could be improved by
using a less bandwidth-intensive algorithm or by upgrading the memory.

Why is it important Current methods to rate the implementation on a particular machine rely on calcu-
lating its efficiency w.r.t. the theoretical peak of the machine without considering whether a it can be reached
at all. An overestimated upperbound may cause a truly efficient implementation of a particular algorithm
to be classified as an inefficient one leading to wasted development effort to improve it. Furthermore, two
implementations with perceived similar low efficiency may have different true efficiencies. Using performance
bounds sets a more accurate upper bound on performance.

Why no one else does it Static analysis can at best conservatively estimate dynamic operations. Recursion,
run time parameters and dynamic allocation skews the computed bounds. Further, competition for resources
between applications cannot be modeled. However, many scientific codes are written as a series of loops that
perform computation on arrays and can be analyzed accurately.

2 Implementation and Quantitative Evaluation

PBound is built on the ROSE Compiler framework. It traverses the SAGE Abstract Syntax Tree in a top-
down and bottom-up manner and counts the bytes of data loaded and stored, as well as integer and floating
point operations.

We ran pounds with dgemm.c an application in the cblas library and a sparse matrix vector multiplication
application. PBound generates the bounds for each loop in the application. Figure XX shows a snippet of
input code from dgemm.c and the resulting output code and computed bounds.

for (j = 1; j <= *n; ++j) {

i__2 = *m;

for (i = 1; i <= *m; ++i) {

C(i,j) = 0.;

}

}

for (j = (1); j <= *n; ++j) {

i__2 = *m;

for (i = (1); i <= *m; ++i) {

c[(i - (1)) + ((j - (1)) * *ldc)] = (0.);

}

}

(a) (b)

Figure 1: (a) Code snippet from dgemm, (b) Unparsed snippet produced by ROSE

1

Table 1: Output generated by PBound for the code snippet in Figure ?? showing the bytes of data loaded
and stored and operations performed

Metric Computed Estimate

Integer Loads 4 * (*n + 1 - (1))
Integer Stores 4 * (*n + 1 - (1))
Float Point Loads 0
Float Point Stores 8 * (*m + 1 - (1)) * (*n + 1 - (1))
Integer Operations (7 * (*m + 1 - (1)) + (3 * (*m + 1 - (1)) + 1) + 1)

(*n + 1 - (1)) + (3 * (*n + 1 - (1)) + 1)
Floating Point Operations (*m + 1 - (1)) * (*n + 1 - (1)))

The graph shows the comparison of the efficiency for the loops in dgemm.c and svmm.c with respect to
PBound and the efficiency w.r.t.peak performance. We see that.

3 Future Work and Concluding Remarks

We have shown that PBound can be used to effective estimate a realistic upper bound on performance of
scientific applications. We used it to accurately estimate the implementation efficiency of two scientific codes.
PBound currently handles C input and will be extended to handle C++ and ForTran code as well. PBound
will also be integrated with OpenAnalysis to perform alias analysis, activity analysis and data flow analysis.
Such analysis allows pbound to better estimate the portions of code that will actually be executed. PBounds
will also be integrated with a cache model that allows it to estimate data that will be loaded and stored
together.

2

